Table of Contents

Science behind Pathogenesis

The Marshall Paradigm, upon which the Marshall ProtocolA curative medical treatment for chronic inflammatory disease. Based on the Marshall Pathogenesis. is grounded, is a description for how bacteria interfere with the innate immune responseThe body's first line of defense against intracellular and other pathogens. According to the Marshall Pathogenesis the innate immune system becomes disabled as patients develop chronic disease.. These pathogens survive and reproduce by disrupting the Vitamin D Nuclear ReceptorA nuclear receptor located throughout the body that plays a key role in the innate immune response., an evolutionarily consistent mechanism for survival, which leads to the development of chronic inflammatory diseases. Because these diseases are fundamentally bacterial in nature, the conditions are referred to as the “Th1 diseasesThe chronic inflammatory diseases caused by bacterial pathogens..” The Marshall PathogenesisA description for how chronic inflammatory diseases originate and develop. is supported by an emerging array of evidence, including clinical evidence, evolutionary evidence, some in silicoExperiment technique performed on computer or via computer emulation. data, and environmental sampling studies.

Microbes in the human body

According to a recent National Institutes of Health (NIH) estimate, 90% of cells in the human body are bacterial, fungal, or otherwise non-human.1) Although many have concluded that bacteria surely enjoy a commensal relationship with their human hosts, only a fraction of the human microbiotaThe bacterial community in the human body. Many species in the microbiota contribute to the development of chronic disease. has been characterized, much less identified. The sheer number of non-human genes represented by the human microbiota – there are millions in our “extended genome”2) compared to the nearly 23,000 in the human genome – implies we have just begun to fathom the full extent to which bacteria work to facilitate their own survival. 3)

The NIH's ongoing initiative, the Human MicrobiomeThe bacterial community in the human body. Many species in the microbiota contribute to the development of chronic disease. Project, aspires to catalog the human microbiome, also referred to as the human metagenome. Emerging insights from environmental sampling studies have shown, for example, that in vitroA technique of performing a given procedure in a controlled environment outside of a living organism - usually a laboratory. based methods for culturing bacteria have drastically underrepresented the size and diversity of bacterial populations. One environmental sample of human hands found 100 times more species than had previously been detected using purely culture-based methods. Another study which also employed high throughput genomic sequencing discovered high numbers of hydrothermal vent eubacteria on prosthetic hip joints, a species once thought only to persist in the depths of the ocean.

→ Read more...

Successive infection and variability in disease

Chronic diseases manifest in patients and within patient populations with a high degree of variability. Some people have five chronic diseases, and others have one. Some patients experience symptoms of disease early in life while others not until they are very old. According to the Marshall Pathogenesis, this variability can be attributed to several factors.

Over the course of a lifetime, patients pick up the approximately 90 trillion bacteria to which they play host.4) While some researchers refer to each person's unique microbiota as an individual's “pathogen burden” and other terms,5) 6) we have referred to it as a person's “pea soupThe unique combination of bacterial pathogens (and co-mingling of bacterial genes) which accounts for each individual’s disease presentation..” In everyday language, the term pea soup is otherwise used to refer to a dense fog – an apt metaphor for the human microbiota. The promiscuity with which bacteria exchange DNA as well as the sheer number of bacteria to which any given person plays host are both factors which severely limit researchers' ability to accurately predict species-species and species-disease interactions.

The process by which a person accumulates the bacteria which drive disease is known as “successive infection.” In successive infection, an infectious cascade of pathogens slow the immune response and allow for subsequent infections to proliferate, resulting in dysbiosis (microbial imbalances). In patients sick with chronic inflammatory diseases, successive infection is ongoing and has additive properties: generally speaking, the more sick people are, the more sick they tend to become. Like a person's pea soup, the process by which a person accumulates additional bacteria via successive infection has an inherent variability to it.

→ Read more...

Transmission of chronic disease

Related article: Familial aggregation

Pathogens that grow slowly and accumulate over the course of decades may play a strong role in many chronic diseases. These bacteria are transmitted in a variety of ways: mother to fetus, sperm to embryo, and among families and social groups. Particular patient groups without the benefit of a fully functioning immune system, specifically newborn infants, people who already have illnesses, and the elderly, are uniquely susceptible to pathogens.

Those who use or consume any of the foods, drugs, and supplements which exert immunosuppressive effects are also uniquely predisposed to acquire new bacteria and permit them to reproduce. These substances include: immunosuppressants, beta-lactam antibiotics such as penicillin, high levels of vitamin D, and corticosteroidsA first-line treatment for a number of diseases. Corticosteroids work by slowing the innate immune response. This provides some patients with temporary symptom palliation but exacerbates the disease over the long-term by allowing chronic pathogens to proliferate..

The acquisition of new bacteria is only one factor in the when and why chronic diseases strike. Bacteria are capable of rapidly changing their genetic structure – and can become more pathogenic and harder to kill with traditional therapies – through processes like horizontal gene transfer. Also, bacteria are allowed to proliferate because of a weak immune response, for which they themselves are at least partially responsible.

→ Read more...

Koch's postulates

Main article: Koch's posutlates

Related article: Detecting bacteria

Microbiologist Robert KochAuthor of Koch's postulates, a set of rules for establishing a relationship between a causative microbe and a disease. Koch's belief that only one pathogens causes one disease has now been called into question as multiple postulates are increasingly considered out of date. was born in 1843. Koch's postulatesCentury-old criteria designed to establish a causal relationship between a causative microbe and a disease. Koch's belief that only one pathogen causes one disease has now been called into question as multiple postulates are increasingly considered out of date. are a series of ground rules to determine whether a given organism can cause a given disease. Koch theorized that a pathogen must be:

  • found in all cases of the disease examined
  • prepared and maintained in a pure culture
  • capable of producing the original infection, even after several generations in culture
  • retrievable from an inoculated animal and cultured again

For all their lingering influence, Koch's postulates never anticipated the era of the human metagenome in which thousands of difficult or impossible-to-culture species of bacteria contribute to a single disease state. Koch's century-old ideas have held science back from understanding how chronic disease occurs because they make no provision for these facts.

The Marshall PathogenesisA description for how chronic inflammatory diseases originate and develop. is consistent with mounting evidence that Koch's postulates no longer apply to discerning the vast amounts of microbes in the human body.

→ Read more...

Horizontal gene transfer

Main article: Horizontal gene transfer

Horizontal gene transfer (HGT), sometimes referred to as lateral gene transferAny process in which a bacterium inserts genetic material into the genomes of other pathogens or into the genome of its host. Also referred to as horizontal gene transfer., is any process in which a bacterium inserts genetic material into the genomes of other pathogens or into the genome of its host. HGT represents a substantial blow to the validity of Koch's postulates, which state that any given infectious disease is caused by a single discrete and well-defined pathogen.

Increasingly, studies of genes and genomes are indicating that considerable horizontal gene transfer has occurred between bacteria.

James Lake, Molecular Biology Institute at the University of California

In fact, due to increasing evidence suggesting the importance of the phenomenon in organisms that cause disease, molecular biologists such as Peter Gogarten at the University of Connecticut have described horizontal gene transfer as “a new paradigm for biology.“

Gorgarten insists that horizontal gene transfer is “more frequent than most biologists could even imagine a decade ago” and that this reality turns the idea that we can classify organisms in a simple “tree of life” on its head.

Instead Gogarten suggests that biologists use the metaphor of a mosaic to describe the different histories combined in individual genomes and use the metaphor of a net to visualize the rich exchange of DNA among microbes.

→ Read more...

Innate immune response and Th1 inflammation

Vitamin D

Main article: Science behind vitamin D

<html></div><p></html>

A number of studies have suggested that patients with chronic inflammatory diseases are deficient in 25-hydroxyvitamin D (25-DThe vitamin D metabolite widely (and erroneously) considered best indicator of vitamin D "deficiency." Inactivates the Vitamin D Nuclear Receptor. Produced by hydroxylation of vitamin D3 in the liver.) and that consuming greater quantities of vitamin D, which further elevates 25-D levels, alleviates disease symptoms.

“The idea that widespread vitamin D deficiency exists in the world has never had any credibility, and the idea that vigorous supplementation is necessary therefore has to be false.”

“Nowadays it is virtually impossible to buy milk in the US that has not been laced (‘fortified’) with vitamin D. The amounts added, and the content, have been subject to dubious control, and a number of fatalities have occurred due to Vitamin D poisoning from milk.”

“The mis-labeling of this compound as a vitamin is regrettable, as it gave a potential toxin an aura of undeserved innocence. Vitamin D is not a vitamin, but a steroid, which is, in its most active form, a powerful hormone with receptors widely distributed in the tissues of the body. As with other steroids, excessive consumption has risks.” Dr Hywel Davies

Some years ago, molecular biology identified 25-D as a secosteroid. Secosteroids would typically be expected to depress inflammationThe complex biological response of vascular tissues to harmful stimuli such as pathogens or damaged cells. It is a protective attempt by the organism to remove the injurious stimuli as well as initiate the healing process for the tissue., which is in line with the reports of short-term symptomatic improvement. The simplistic first-order mass-action model used to guide the early vitamin studies is now giving way to a more complex description of action.

When active, the Vitamin D nuclear receptor (VDRThe Vitamin D Receptor. A nuclear receptor located throughout the body that plays a key role in the innate immune response.) affects transcription of at least 913 genes and impacts processes ranging from calcium metabolism to expression of key antimicrobial peptidesBody’s naturally produced broad-spectrum antibacterials which target pathogens.. Additionally, recent research on the Human MicrobiomeThe bacterial community in the human body. Many species in the microbiota contribute to the development of chronic disease. shows that bacteria are far more pervasive than previously thought, dramatically increasing the possibility that the spectrum of chronic diseases is bacterial in origin.

Emerging molecular evidence suggests that symptomatic improvements among those administered vitamin D is the result of 25-D’s ability to temper bacterial-induced inflammation by slowing VDR activity. While this results in short-term palliation, persistent pathogens that influence disease progression proliferate over the long-term.

→ Read more...

Th1 Spectrum Disorder

Main article: Th1 Spectrum Disorder

Th1 Spectrum DisorderThe overlap of different disease symptoms in different patients with similar diagnoses - caused by the fact that any one bacterial species can contribute to numerous disease states. refers to the group of chronic inflammatory diseases, which are hypothesized to be caused by the Th1 pathogensThe community of bacterial pathogens which cause chronic inflammatory disease - one which almost certainly includes multiple species and bacterial forms., a microbiotaThe bacterial community which causes chronic diseases - one which almost certainly includes multiple species and bacterial forms. of bacteria which include L-formDifficult-to-culture bacteria that lack a cell wall and are not detectable by traditional culturing processes. Sometimes referred to as cell wall deficient bacteria., biofilm A structured community of microorganisms encapsulated within a self-developed protective matrix and living together., and intracellular bacterial forms. Although the exact species and forms of bacteria, as well as the location and extent of the infection, vary between one patient suffering from chronic disease and the next, the disease process is common: bacterial pathogens persist and reproduce by disabling the innate immune responseThe body's first line of defense against intracellular and other pathogens. According to the Marshall Pathogenesis the innate immune system becomes disabled as patients develop chronic disease..

Although patients who become infected with the Th1 pathogens are given a variety of diagnoses, there are often no clear cut distinctions between one disease and the next. Rather, symptoms frequently overlap creating a spectrum of illness in which diseases are more connected to one another than mutually exclusive disease states.

The evidence that chronic disease is ultimately a spectrum disorder with a common cause includes:

  • comorbidity of inflammatory diseases overlap observed between patients suffering distinctly defined diseases
  • the infrequency with which patients suffer from just a single disease or condition
  • failure of diagnostic compartmentalization: the frequent difficulty doctors have in clearly and definitively diagnosing a patient

→ Read more...

Incidence and prevalence of chronic disease

The last half century has seen a steady increase in the incidence and prevalence of chronic inflammatory diseases with further increases expected. According to the Marshall PathogenesisA description for how chronic inflammatory diseases originate and develop., a number of factors are to blame:

  • misuse of antibiotics especially Beta-lactam antibiotics
  • vitamin supplementation including folic acid but especially vitamin D
  • presence of environmental factors which suppress immunity
  • novel vectors for sharing pathogens including blood donation
  • widespread adoption of compulsory mass vaccinations

→ Read more...

Familial aggregation

Main article: Familial aggregation

Familial aggregationOccurrence of a given trait shared by members of a family (or community) that cannot be readily accounted for by chance. refers to occurrence of a given trait shared by members of a family that cannot be readily accounted for by chance. For example we hear that certain diseases “run” in families, or we note that an entire family unit suffers from an inflammatory disease such as obesity. While it has long been understood that acute infections like tuberculosis, polio, and HIV are communicable, it is less well appreciated that the same can be said for the chronic pathogens which cause Th1 diseasesThe chronic inflammatory diseases caused by bacterial pathogens..

The reigning explanation for familial aggregation is that people pass down faulty genes to their offspring. However, the theory is not supported by solid evidence. Scientists have failed to find genes that might cause any major chronic inflammatory disease. In the case that they have found a relationship between a gene and a disease, statistical significance is usually so low that environmental influences such as bacteria could easily be causing the genetic mutations. To date, no form of gene therapy has proven effective for treating inflammatory disease.

→ Read more...

Evolutionary perspective on disease

One useful way to determine if a disease is caused by faulty human genes is look towards the central principle of evolutionary biology: evolutionary fitness. Evolutionary fitness is defined as the extent to which an organism is adapted to or able to produce offspring in a particular environment. The fitness concept can be applied to the problem of disease causation to distinguish evolutionarily feasible hypotheses of causation from marginally feasible or untenable ones.7) 8)

Generally speaking, diseases have three major causes: genetic, environmental, and infectious. Each disease affects, to some degree, an organism's ability to reproduce, that is, their reproductive fitness. As a general rule, infectious disease confers no reproductive benefit but genetic diseases do, either currently or historically.

→ Read more...

Evidence that chronic disease is caused by pathogens

The mainstream, but antiquated, view about chronic disease is best expressed by a certain physician thusly: “Of our thousand bacterial species, I only have to worry about a couple dozen” while a 2002 Nature paper concludes, “Multicellular organisms live, by and large, harmoniously with microbes.9)

However, there is substantial evidence that chronic diseases are caused by pathogens as opposed to other causes. This evidence includes:

In addition, it seems highly likely that supposedly non-infectious chronic diseases are in fact caused by pathogens when one considers their clinical features, histology, treatment response, microbe populations, presence of co-infections, the ease with which co-infections proliferate, and the failure of systematic lifestyle interventions.

According to the Marshall Pathogenesis, humans accumulate a plethora of pathogenic bacteria during their lifetimes, and it is the genetic mutations which result from active infection that play a major role in what is commonly thought of as “genetic susceptibility.”

Besides the absence of proof implicating human genes as the major causative factor, there is a range of evidence - including strong epidemiological and compelling evolutionary evidence - suggesting that pathogens cause chronic diseases.

→ Read more...

Immune suppression from modern living

Over seven years of research by nine Oldenburg scientists, in cooperation with Prof. Dr. Peter J. Hore of Oxford University

scientists were able to show that the disruptive effects were generated by electromagnetic fields that cover a much broader frequency range at a much lower intensity than previous studies had suggested. This electromagnetic broadband interference is omnipresent in urban environments. It is created wherever people use electronic devices

In a 2014 article in Nature, Prof. Dr. Henrik Mouritsen, a biologist and Lichtenberg Professor at the University of Oldenburg stressed

The effects of these weak electromagnetic fields are remarkable: they disrupt the functioning of an entire sensory system in a healthy higher vertebrate

concluding

the effect of anthropogenic electromagnetic noise on bird migration is localised. However these findings should make us think – both about the survival of migratory birds as well as about the potential effects for human beings, which have yet to be investigated,

France is leading the world in the precautionary principle

Alternate models for chronic disease

The evidence supporting a bacterial cause for chronic disease is strong. Still, there are other competing explanations including the acid/alkaline imbalance theory, autoimmune disease theory, the genetic predisposition theory, the single pathogen theory, and the spontaneous remission theory. Some have argued that viral co-infections are to blame for diseases of unknown etiology despite the evidence which has accumulated to the contrary.

→ Read more...

Read more

===== Notes and comments =====

  • Legacy content

===== References =====

1) , 4)
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007 Oct 18;449(7164):804-10. doi: 10.1038/nature06244.
[PMID: 17943116] [PMCID: 3709439] [DOI: 10.1038/nature06244]
2)
Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, Rizzo C, Colonna-Romano G, Lio D, Di Carlo D, Palmas MG, Scurti M, Pini E, Franceschi C, Vasto S. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des. 2010;16(6):609-18. doi: 10.2174/138161210790883840.
[PMID: 20388071] [DOI: 10.2174/138161210790883840]
3)
Proal AD, Lindseth IA, Marshall TG. Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Discov Med. 2017 Jan;23(124):51-60.
[PMID: 28245427]
5)
Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1417-20. doi: 10.1161/01.atv.20.6.1417.
[PMID: 10845851] [DOI: 10.1161/01.atv.20.6.1417]
6)
Mitchell S.V. Elkind et al. "'Infectious Burden' – New Insights into Stroke Prevention." European Neurological Review, 2010;5(1):34–38.
7)
Cochran GM, Ewald PW, Cochran KD. Infectious causation of disease: an evolutionary perspective. Perspect Biol Med. 2000 Spring;43(3):406-48. doi: 10.1353/pbm.2000.0016.
[PMID: 10893730] [DOI: 10.1353/pbm.2000.0016]
8)
Ewald PW, Cochran GM. Chlamydia pneumoniae and cardiovascular disease: an evolutionary perspective on infectious causation and antibiotic treatment. J Infect Dis. 2000 Jun;181 Suppl 3:S394-401. doi: 10.1086/315602.
[PMID: 10839723] [DOI: 10.1086/315602]
9)
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389-95. doi: 10.1038/415389a.
[PMID: 11807545] [DOI: 10.1038/415389a]